Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean (2024)

Abbott, A. N., Haley, B. A., Tripati, A. K., and Frank, M.: Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes, Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, 2016. 

Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M.,and Talley, L. D.: Water-mass transformation by sea ice in the upper branchof the Southern Oceanoverturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/NGEO2749,2016. 

Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A.,Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changingatmospheric CO2 concentration was the primary driver of early Cenozoicclimate, Nature, 533, 380–384, 2016. 

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 

Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, 2018. 

Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A.,Klein, T., Pérez-Díaz, L., and Frank, M.: Major intensification ofAtlantic overturning circulation at the onset of Paleogene greenhousewarmth, Nat. Commun., 9, 4954, https://doi.org/10.1038/s41467-018-07457-7, 2018. 

Boccaletti, G.: The vertical structure of ocean heat transport,Geophys. Res. Lett., 32, L10603, https://doi.org/10.1029/2005GL022474, 2005. 

Boyer, T., Levitus, S., Garcia, H., Locarnini, R. A., Stephens, C., andAntonov, J.: Objective analyses of annual, seasonal, and monthly temperatureand salinity for the World Ocean on a 0.25 grid, Int. J. Climatol.,25, 931–945, https://doi.org/10.1002/joc.1173, 2005. 

Bryan, F.: Parameter Sensitivity of Primitive Equation Ocean GeneralCirculation Models, J. Phys. Oceanogr., 17, 970–985,https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2,1987. 

Bryan, F. O., Danabasoglu, G., Nakashiki, N., Yoshida, Y., Kim, D.-H.,Tsutsui, J., and Doney, S. C.: Response of the North Atlantic ThermohalineCirculation and Ventilation to Increasing Carbon Dioxide in CCSM3, J.Climate, 19, 2382–2397, https://doi.org/10.1175/JCLI3757.1, 2006. 

Bryan, K.: Poleward Heat Transport by the Ocean: Observations and Models,Annu. Rev. Earth Pl. Sc., 10, 15–38,https://doi.org/10.1146/annurev.ea.10.050182.000311, 1982. 

Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016. 

Cheng, W., Chiang, J. C. H., and Zhang, D.: Atlantic Meridional OverturningCirculation (AMOC) in CMIP5 Models: RCP and Historical Simulations, J.Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1, 2013. 

Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: LateCretaceous–Neogene trends in deep ocean temperature and continental icevolume: Reconciling records of benthic foraminiferal geochemistry(δ18O and Mg∕Ca) with sea level history, J. Geophys. Res., 116, C12023,https://doi.org/10.1029/2011JC007255, 2011. 

de Boer, A. M., Sigman, D. M., Toggweiler, J. R., and Russell, J. L.: Effectof global ocean temperature change on deep ocean ventilation,Paleoceanography, 22, PA2210, https://doi.org/10.1029/2005PA001242, 2007. 

DeepMIP: The Deep-Time Model Intercomparison Project, available at: https://www.deepmip.org/, last access: 13July2020. 

de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G., and NaveiraGarabato, A. C.: On the Consumption of Antarctic Bottom Water in the AbyssalOcean, J. Phys. Oceanogr., 46, 635–661, https://doi.org/10.1175/JPO-D-14-0201.1, 2016. 

de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic,C.: Toward global maps of internal tide energy sinks, Ocean Model., 137,52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019. 

Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., and Deconinck,J.-F.: A better-ventilated ocean triggered by Late Cretaceous changes incontinental configuration, Nat. Commun., 7, 10316,https://doi.org/10.1038/ncomms10316, 2016. 

Drijfhout, S. S. and Hazeleger, W.: Changes in MOC and gyre-induced AtlanticOcean heat transport, Geophys. Res. Lett., 33, L07707,https://doi.org/10.1029/2006GL025807, 2006. 

Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A.,Valdes, P. J., and Maslin, M.: Climate model and proxy data constraints onocean warming across the Paleocene–Eocene Thermal Maximum, Earth-Sci. Rev.,125, 123–145, https://doi.org/10.1016/j.earscirev.2013.07.004, 2013. 

Emile-Geay, J. and Madec, G.: Geothermal heating, diapycnal mixing and the abyssal circulation, Ocean Sci., 5, 203–217, https://doi.org/10.5194/os-5-203-2009, 2009. 

England, M. H., Hutchinson, D. K., Santoso, A., and Sijp, W. P.:Ice–Atmosphere Feedbacks Dominate the Response of the Climate System toDrake Passage Closure, J. Climate, 30, 5775–5790,https://doi.org/10.1175/JCLI-D-15-0554.1, 2017. 

Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J.A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P.J., and Affek, H. P.: Eocene greenhouse climate revealed by coupled clumpedisotope-Mg∕Ca thermometry, P. Natl. Acad. Sci. USA, 115, 1174–1179,https://doi.org/10.1073/pnas.1714744115, 2018. 

Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N.,Markwick, P., Pancost, R. D., and Robinson, S. A.: Climate Sensitivity onGeological Timescales Controlled by Nonlinear Feedbacks and OceanCirculation, Geophys. Res. Lett., 46, 9880–9889, https://doi.org/10.1029/2019GL083574,2019. 

Ferreira, D., Cessi, P., Coxall, H. K., de Boer, A., Dijkstra, H. A.,Drijfhout, S. S., Eldevik, T., Harnik, N., McManus, J. F., Marshall, D. P.,Nilsson, J., Roquet, F., Schneider, T., and Wills, R. C.: Atlantic-PacificAsymmetry in Deep Water Formation, Annu. Rev. Earth Pl. Sc., 46, 327–352,https://doi.org/10.1146/annurev-earth-082517-010045, 2018. 

Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model tothe treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102,12609–12646, https://doi.org/10.1029/97JC00480, 1997. 

Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcingpotentially without precedent in the last 420 million years, Nat. Commun., 8,14845, https://doi.org/10.1038/ncomms14845, 2017. 

Frank, M.: Radiogenic isotopes: Tracers of past ocean circulation anderosional input, Rev. Geophys., 40, 1001, https://doi.org/10.1029/2000RG000094, 2002. 

Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across theEocene-Oligocene boundary climate transition, Science, 352, 76–80,https://doi.org/10.1126/science.aab0669, 2016. 

Ganachaud, A. and Wunsch, C.: Large-Scale Ocean Heat and FreshwaterTransports during the World Ocean Circulation Experiment, J. Climate, 16,696–705, 2003. 

Gasson, E., Lunt, D. J., DeConto, R., Goldner, A., Heinemann, M., Huber, M., LeGrande, A. N., Pollard, D., Sagoo, N., Siddall, M., Winguth, A., and Valdes, P. J.: Uncertainties in the modelled CO2 threshold for Antarctic glaciation, Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, 2014. 

Gent, P. R.: A commentary on the Atlantic meridional overturning circulationstability in climate models, Ocean Model., 122, 57–66,https://doi.org/10.1016/j.ocemod.2017.12.006, 2018. 

Green, J. A. M. and Huber, M.: Tidal dissipation in the early Eocene andimplications for ocean mixing: EOCENE TIDES, Geophys. Res. Lett., 40,2707–2713, https://doi.org/10.1002/grl.50510, 2013. 

Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R. D., Markwick, P., and Huber, M.: A suite of early Eocene (∼55 Ma) climate model boundary conditions, Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, 2014. 

Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Changes inGlobal Ocean Bottom Properties and Volume Transports in CMIP5 Models underClimate Change Scenarios, J. Climate, 28, 2917–2944,https://doi.org/10.1175/JCLI-D-14-00381.1, 2015. 

Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019. 

Holton, J. R. and Staley, D. O.: An Introduction to Dynamic Meteorology, Am.J. Phys., 41, 752–754, https://doi.org/10.1119/1.1987371, 1973. 

Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L.,Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmosphericcomponent of the IPSL climate model with revisited parameterizations forclouds and convection, Clim. Dynam., 40, 2193–2222,https://doi.org/10.1007/s00382-012-1343-y, 2013. 

Huber, B. T., Macleod, K. G., and Wing, S. L.: Warm Climates inEarth History, Cambridge University Press, 2000. 

Huber, M.: Progress in Greenhouse Climate Modelling,The Paleontological Society Papers, 18, 213–262, 2012. 

Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011. 

Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation ofthe Southern Ocean: Was Antarctica kept warm by subtropical waters?,Paleoceanography, 19, 4026, https://doi.org/10.1029/2004PA001014, 2004. 

Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018. 

Jansen, M. F., Nadeau, L.-P., and Merlis, T. M.: Transient versus EquilibriumResponse of the Ocean's Overturning Circulation to Warming, J. Climate,31, 5147–5163, https://doi.org/10.1175/JCLI-D-17-0797.1, 2018. 

Kageyama, M., Braconnot, P., Bopp, L., Caubel, A., Foujols, M.-A.,Guilyardi, E., Khodri, M., Lloyd, J., Lombard, F., Mariotti, V., Marti, O.,Roy, T., and Woillez, M.-N.: Mid-Holocene and Last Glacial Maximum climatesimulations with the IPSL model–part I: comparing IPSL_CM5Ato IPSL_CM4, Clim. Dynam., 40, 2447–2468,https://doi.org/10.1007/s00382-012-1488-8, 2013. 

Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T.,Bessières, L., and Molcard, R.: On the transformation of Pacific Waterinto Indonesian Throughflow Water by internal tidal mixing, Geophys. Res. Lett., 34, L04604, https://doi.org/10.1029/2006GL028405, 2007. 

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamicglobal vegetation model for studies of the coupled atmosphere-biospheresystem, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005. 

Ladant, J.-B., Donnadieu, Y., Lefebvre, V., and Dumas, C.: The respectiverole of atmospheric carbon dioxide and orbital parameters on ice sheetevolution at the Eocene-Oligocene transition: Ice sheet evolution at theEOT, Paleoceanography, 29, 810–823, https://doi.org/10.1002/2013PA002593, 2014. 

Ladant, J.-B., Donnadieu, Y., Bopp, L., Lear, C. H., and Wilson, P. A.:Meridional Contrasts in Productivity Changes Driven by the Opening of DrakePassage, Paleoceanogr. Paleocl., 33, 302–317,https://doi.org/10.1002/2017PA003211, 2018. 

Lott, F. and Miller, M. J.: A new subgrid-scale orographic dragparametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc., 123,101–127, 1997. 

Lott, F. O.: Alleviation of Stationary Biases in a GCM through a MountainDrag Parameterization Scheme and a Simple Representation of Mountain LiftForces, Mon. Weather Rev., 127, 778–801, 1999. 

Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J. Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007. 

Lunt, D. J., Valdes, P. J., Jones, T. D., Ridgwell, A., Haywood, A. M.,Schmidt, D. N., Marsh, R., and Maslin, M.: CO2-driven ocean circulationchanges as an amplifier of Paleocene-Eocene thermal maximum hydratedestabilization, Geology, 38, 875–878, https://doi.org/10.1130/G31184.1, 2010. 

Lunt, D. J., Huber, M., Anagnostou, E., Baatsen, M. L. J., Caballero, R., DeConto, R., Dijkstra, H. A., Donnadieu, Y., Evans, D., Feng, R., Foster, G. L., Gasson, E., von der Heydt, A. S., Hollis, C. J., Inglis, G. N., Jones, S. M., Kiehl, J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J.-B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C. J., Salzmann, U., Shields, C., Snell, K., Stärz, M., Super, J., Tabor, C., Tierney, J. E., Tourte, G. J. L., Tripati, A., Upchurch, G. R., Wade, B. S., Wing, S. L., Winguth, A. M. E., Wright, N. M., Zachos, J. C., and Zeebe, R. E.: The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0), Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, 2017. 

Madec, G. and the NEMO team: NEMO ocean engine, available at:https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (last access: 13July2020),2016. 

Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P., and Goddéris,Y.: The influence of orography on modern ocean circulation, Clim. Dynam.,50, 1277–1289, https://doi.org/10.1007/s00382-017-3683-0, 2018. 

Manabe, S. and Stouffer, R. J.: The role of thermohaline circulation inclimate, Tellus B, 51, 91–109, https://doi.org/10.1034/j.1600-0889.1999.00008.x,1999. 

Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory,and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999. 

Marshall, J. and Speer, K.: Closure of the meridional overturningcirculation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180, 2012. 

McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B.I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H.L.: Measuring the Atlantic Meridional Overturning Circulation at26 N, Prog. Oceanogr., 130, 91–111,https://doi.org/10.1016/j.pocean.2014.10.006, 2015. 

Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrientsas the dominant control on the spread of anoxia and euxinia across theCenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison,Paleoceanography, 27, PA4209, https://doi.org/10.1029/2012PA002351, 2012. 

Msadek, R., Johns, W. E., Yeager, S. G., Danabasoglu, G., Delworth, T. L.,and Rosati, A.: The Atlantic Meridional Heat Transport at 26.5 Nand Its Relationship with the MOC in the RAPID Array and the GFDL and NCARCoupled Models, J. Climate, 26, 4335–4356,https://doi.org/10.1175/JCLI-D-12-00081.1, 2013. 

Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreadingrates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy.Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008. 

Munday, D. R., Johnson, H. L., and Marshall, D. P.: The role of oceangateways in the dynamics and sensitivity to wind stress of the earlyAntarctic Circumpolar Current, Paleoceanography, 30, 284–302,https://doi.org/10.1002/2014PA002675, 2015. 

Munk, W. H.: On the wind-driven ocean circulation, J. Meteorol., 7, 79–93,https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2,1950. 

Nikurashin, M. and Ferrari, R.: Overturning circulation driven by breakinginternal waves in the deep ocean, Geophys. Res. Lett., 40, 3133–3137,https://doi.org/10.1002/grl.50542, 2013. 

Nong, G. T., Najjar, R. G., Seidov, D., and Peterson, W. H.: Simulation ofocean temperature change due to the opening of Drake Passage, Geophys. Res. Lett., 27, 2689–2692, https://doi.org/10.1029/1999GL011072, 2000. 

Rose, B. E. J. and Ferreira, D.: Ocean Heat Transport and Water VaporGreenhouse in a Warm Equable Climate: A New Look at the Low GradientParadox, J. Climate, 26, 2117–2136,https://doi.org/10.1175/JCLI-D-11-00547.1, 2013. 

Schmittner, A., Latif, M., and Schneider, B.: Model projections of the NorthAtlantic thermohaline circulation for the 21st century assessed byobservations, Geophys. Res. Lett., 32, L23710, https://doi.org/10.1029/2005GL024368,2005. 

Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Dufresne, J.-L., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations, Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, 2020. 

Sijp, W. P. and England, M. H.: Effect of the Drake Passage Throughflow onGlobal Climate, J. Phys. Oceanogr., 34, 1254–1266, 2004. 

Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas,P. M. J., and Bijl, P. K.: The role of ocean gateways on cooling climate onlong time scales, Global Planet. Change, 119, 1–22,https://doi.org/10.1016/j.gloplacha.2014.04.004, 2014. 

Simmons, H. L., Jayne, S. R., Laurent, L. C. S., and Weaver, A. J.: Tidallydriven mixing in a numerical model of the ocean general circulation, OceanModel., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004. 

St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidallydriven mixing in the deep ocean, Geophys. Res. Lett., 29, 2106,https://doi.org/10.1029/2002GL015633, 2002. 

Stein, C. A. and Stein, S.: A model for the global variation in oceanicdepth and heat flow with lithospheric age, Nature, 359, 123–129,https://doi.org/10.1038/359123a0, 1992. 

Thomas, D. J., Bralower, T. J., and Jones, C. E.: Neodymium isotopicreconstruction of late Paleocene–early Eocene thermohaline circulation,Earth Planet. Sc. Lett., 209, 309–322,https://doi.org/10.1016/S0012-821X(03)00096-7, 2003. 

Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., and Haines, B.: Ndisotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence forvigorous ocean circulation and ocean heat transport in a greenhouse world,Paleoceanography, 29, 454–469, https://doi.org/10.1002/2013PA002535, 2014. 

Thomas, M. D. and Fedorov, A. V.: Mechanisms and Impacts of a Partial AMOCRecovery Under Enhanced Freshwater Forcing, Geophys. Res. Lett., 46,3308–3316, https://doi.org/10.1029/2018GL080442, 2019. 

Toggweiler, J. R. and Bjornsson, H.: Drake Passage and palaeoclimate, J.Quaternary Sci., 15, 319–328, 2000. 

Trenberth, K. E. and Caron, J. M.: Estimates of Meridional Atmosphere andOcean Heat Transports, J. Climate, 14, 3433–3443, 2001. 

Vellinga, M. and Wood, R. A.: Impacts of thermohaline circulation shutdownin the twenty-first century, Climatic Change, 91, 43–63,https://doi.org/10.1007/s10584-006-9146-y, 2008. 

Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., and Hoffmann,J.: Tectonically restricted deep-ocean circulation at the end of theCretaceous greenhouse, Earth Planet. Sc. Lett., 369–370, 169–177,https://doi.org/10.1016/j.epsl.2013.03.019, 2013. 

Volkov, D. L., Fu, L.-L., and Lee, T.: Mechanisms of the meridional heattransport in the Southern Ocean, Clim. Dynam., 60, 791–801,https://doi.org/10.1007/s10236-010-0288-0, 2010. 

Watts, D. R., Tracey, K. L., Donohue, K. A., and Chereskin, T. K.: Estimatesof Eddy Heat Flux Crossing the Antarctic Circumpolar Current fromObservations in Drake Passage, J. Phys. Oceanogr., 46, 2103–2122,https://doi.org/10.1175/JPO-D-16-0029.1, 2016. 

Weber, T. and Thomas, M.: Influence of ocean tides on the general oceancirculation in the early Eocene, Paleoceanography, 32, 553–570,https://doi.org/10.1002/2016PA002997, 2017. 

Winguth, A., Shellito, C., Shields, C., and Winguth, C.: Climate Response atthe Paleocene–Eocene Thermal Maximum to Greenhouse Gas Forcing–A ModelStudy with CCSM3, J. Climate, 23, 2562–2584, https://doi.org/10.1175/2009JCLI3113.1,2010. 

Winguth, A. M. E., Thomas, E., and Winguth, C.: Global decline in oceanventilation, oxygenation, and productivity during the Paleocene-EoceneThermal Maximum: Implications for the benthic extinction, Geology, 40,263–266, https://doi.org/10.1130/G32529.1, 2012. 

Wolfe, C. L. and Cessi, P.: Salt Feedback in the Adiabatic OverturningCirculation, J. Phys. Oceanogr., 44, 1175–1194,https://doi.org/10.1175/JPO-D-13-0154.1, 2014. 

Yang, H., Wang, Y., and Liu, Z.: A modelling study of the Bjerknescompensation in the meridional heat transport in a freshening ocean, TellusA, 65, 18480, https://doi.org/10.3402/tellusa.v65i0.18480, 2013. 

Yang, H., Li, Q., Wang, K., Sun, Y., and Sun, D.: Decomposing the meridionalheat transport in the climate system, Clim. Dynam., 44, 2751–2768,https://doi.org/10.1007/s00382-014-2380-5, 2015. 

Yang, S., Galbraith, E., and Palter, J.: Coupled climate impacts of the DrakePassage and the Panama Seaway, Clim. Dynam., 43, 37–52,https://doi.org/10.1007/s00382-013-1809-6, 2014. 

Zachos, J. C, Pagani, M., Sloan, L., Thomas, E., and Billups, K: Trends,Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science,292, 686–693, https://doi.org/10.1126/science.1059412, 2001. 

Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoicperspective on greenhouse warming and carbon-cycle dynamics, Nature,451, 279–283, https://doi.org/10.1038/nature06588, 2008. 

Zeebe, R. E. and Zachos, J. C.: Reversed deep-sea carbonate ion basingradient during Paleocene-Eocene thermal maximum, Paleoceanography, 22,PA3201, https://doi.org/10.1029/2006PA001395, 2007. 

Zhang, R.: Latitudinal dependence of Atlantic meridional overturningcirculation (AMOC) variations, Geophys. Res. Lett., 37, 76–84,https://doi.org/10.1029/2010GL044474, 2010. 

Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean (2024)
Top Articles
Latest Posts
Article information

Author: Laurine Ryan

Last Updated:

Views: 6136

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.