Expanding and Condensing Logarithms | College Algebra (2024)

Learning Outcomes

  • Expand a logarithmusing a combination of logarithm rules.
  • Condense a logarithmic expression into one logarithm.

Expanding Logarithms

Taken together, the product rule, quotient rule, and power rule are often called “properties of logs.” Sometimes we apply more than one rule in order to expand an expression. For example:

[latex]\begin{array}{l}{\mathrm{log}}_{b}\left(\frac{6x}{y}\right)\hfill & ={\mathrm{log}}_{b}\left(6x\right)-{\mathrm{log}}_{b}y\hfill \\ \hfill & ={\mathrm{log}}_{b}6+{\mathrm{log}}_{b}x-{\mathrm{log}}_{b}y\hfill \end{array}[/latex]

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

[latex]\begin{array}{l}{\mathrm{log}}_{b}\left(\frac{A}{C}\right)\hfill & ={\mathrm{log}}_{b}\left(A{C}^{-1}\right)\hfill \\ \hfill & ={\mathrm{log}}_{b}\left(A\right)+{\mathrm{log}}_{b}\left({C}^{-1}\right)\hfill \\ \hfill & ={\mathrm{log}}_{b}A+\left(-1\right){\mathrm{log}}_{b}C\hfill \\ \hfill & ={\mathrm{log}}_{b}A-{\mathrm{log}}_{b}C\hfill \end{array}[/latex]

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally and then just writing the final answer. Remember, however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside the argument of the logarithm.

Example: Using a combination of the rules for logarithms to expand a logarithm

Rewrite [latex]\mathrm{ln}\left(\frac{{x}^{4}y}{7}\right)[/latex] as a sum or difference of logs.

Show Solution

Try It

Expand [latex]\mathrm{log}\left(\frac{{x}^{2}{y}^{3}}{{z}^{4}}\right)[/latex].

Show Solution

In the next example we will recall that we can write roots as exponents, and use this quality to simplify logarithmic expressions.

Example: Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical Expression

Expand [latex]\mathrm{log}\left(\sqrt{x}\right)[/latex].

Try It

Expand [latex]\mathrm{ln}\left(\sqrt[3]{{x}^{2}}\right)[/latex].

Show Solution

Q & A

Can we expand [latex]\mathrm{ln}\left({x}^{2}+{y}^{2}\right)[/latex]?

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Now we will providesome examples that will require careful attention.

Example: Expanding Complex Logarithmic Expressions

Expand [latex]{\mathrm{log}}_{6}\left(\frac{64{x}^{3}\left(4x+1\right)}{\left(2x - 1\right)}\right)[/latex].

Show Solution

Try It

Expand [latex]\mathrm{ln}\left(\frac{\sqrt{\left(x - 1\right){\left(2x+1\right)}^{2}}}{\left({x}^{2}-9\right)}\right)[/latex].

Show Solution

Condensing Logarithms

We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will learn later how to change the base of any logarithm before condensing.

How To: Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a single logarithm

  1. Apply the power property first. Identify terms that are products of factors and a logarithm and rewrite each as the logarithm of a power.
  2. From left to right, apply the product and quotient properties. Rewrite sums of logarithms as the logarithm of a product and differences of logarithms as the logarithm of a quotient.

Example: Using the Power Rule in Reverse

Use the power rule for logs to rewrite [latex]4\mathrm{ln}\left(x\right)[/latex] as a single logarithm with a leading coefficient of 1.

Show Solution

Try It

Use the power rule for logs to rewrite [latex]2{\mathrm{log}}_{3}4[/latex] as a single logarithm with a leading coefficient of 1.

Show Solution

In our next few examples we will use a combination of logarithm rules to condense logarithms.

Example: Using the Product and Quotient Rules to Combine Logarithms

Write [latex]{\mathrm{log}}_{3}\left(5\right)+{\mathrm{log}}_{3}\left(8\right)-{\mathrm{log}}_{3}\left(2\right)[/latex] as a single logarithm.

Show Solution

Try It

Condense [latex]\mathrm{log}3-\mathrm{log}4+\mathrm{log}5-\mathrm{log}6[/latex].

Show Solution

Example: Condensing Complex Logarithmic Expressions

Condense [latex]{\mathrm{log}}_{2}\left({x}^{2}\right)+\frac{1}{2}{\mathrm{log}}_{2}\left(x - 1\right)-3{\mathrm{log}}_{2}\left({\left(x+3\right)}^{2}\right)[/latex].

Show Solution

Example: Rewriting as a Single Logarithm

Rewrite [latex]2\mathrm{log}x - 4\mathrm{log}\left(x+5\right)+\frac{1}{x}\mathrm{log}\left(3x+5\right)[/latex] as a single logarithm.

Show Solution

Try It

Rewrite [latex]\mathrm{log}\left(5\right)+0.5\mathrm{log}\left(x\right)-\mathrm{log}\left(7x - 1\right)+3\mathrm{log}\left(x - 1\right)[/latex] as a single logarithm.

Show Solution

Condense [latex]4\left(3\mathrm{log}\left(x\right)+\mathrm{log}\left(x+5\right)-\mathrm{log}\left(2x+3\right)\right)[/latex].

Show Solution

Applications of Properties of Logarithms

In chemistry, pH is a measure of how acidic or basic a liquid is. It is essentially a measure of the concentration of hydrogen ions in a solution. The scale for measuring pH is standardized across the world, the scientific community having agreed upon its values and methods for acquiring them.

Measurements of pH can help scientists, farmers, doctors, and engineers solve problems and identify sources of problems.

pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion activity, [latex]a_{H}+[/latex], in a solution.
[latex]\text{pH} =-\log _{10}(a_{{\text{H}}^{+}})=\log _{10}\left({\frac {1}{a_{{\text{H}}^{+}}}}\right)[/latex]

For example, a solution with a hydrogen ion activity of [latex]2.5×{10}^{-6}[/latex] (at that level essentially the number of moles of hydrogen ions per liter of solution) has a pH of [latex]\log_{10}\left(\frac{1}{2.5×{10}^{-6}}\right)=5.6[/latex]

In the next examples, we will solve some problems involving pH.

Example: Applying Properties of Logs

Recall that, in chemistry, [latex]\text{pH}=-\mathrm{log}\left[{H}^{+}\right][/latex]. If the concentration of hydrogen ions in a liquid is doubled, what is the effect on pH?

Show Solution

Try It

How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Show Solution

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More

Expanding and Condensing Logarithms | College Algebra (2024)
Top Articles
[116 Test Answers] LETRS Unit 2: Sessions 1–8 – Test Pinoy
Bentonville AR Real Estate - Bentonville AR Homes For Sale | Zillow
This website is unavailable in your location. – WSB-TV Channel 2 - Atlanta
My Boyfriend Has No Money And I Pay For Everything
Beautiful Scrap Wood Paper Towel Holder
Acts 16 Nkjv
Minn Kota Paws
Which Is A Popular Southern Hemisphere Destination Microsoft Rewards
Blue Ridge Now Mugshots Hendersonville Nc
What is the surrender charge on life insurance?
Wnem Radar
4156303136
Grace Caroline Deepfake
Baywatch 2017 123Movies
Boston Gang Map
Chelactiv Max Cream
Rondom Ajax: ME grijpt in tijdens protest Ajax-fans bij hoofdbureau politie
Schedule 360 Albertsons
Craigslist Appomattox Va
Espn Horse Racing Results
Nz Herald Obituary Notices
Dragonvale Valor Dragon
Zillow Group Stock Price | ZG Stock Quote, News, and History | Markets Insider
Cain Toyota Vehicles
Utexas Iot Wifi
Meridian Owners Forum
Finding Safety Data Sheets
Papa Johns Mear Me
Bj타리
Rgb Bird Flop
Rek Funerals
Parent Management Training (PMT) Worksheet | HappierTHERAPY
What does wym mean?
Have you seen this child? Caroline Victoria Teague
Litter-Robot 3 Pinch Contact & DFI Kit
Glossytightsglamour
Consume Oakbrook Terrace Menu
CVS Near Me | Somersworth, NH
Games R Us Dallas
That1Iggirl Mega
Main Street Station Coshocton Menu
Cdcs Rochester
Saybyebugs At Walmart
Miracle Shoes Ff6
Gary Lezak Annual Salary
Blue Beetle Showtimes Near Regal Evergreen Parkway & Rpx
Citymd West 146Th Urgent Care - Nyc Photos
Hampton In And Suites Near Me
Ty Glass Sentenced
Ret Paladin Phase 2 Bis Wotlk
Lagrone Funeral Chapel & Crematory Obituaries
Dinargurus
Latest Posts
Article information

Author: Lidia Grady

Last Updated:

Views: 6671

Rating: 4.4 / 5 (65 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Lidia Grady

Birthday: 1992-01-22

Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

Phone: +29914464387516

Job: Customer Engineer

Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.