Intro to logarithm properties (article) | Khan Academy (2024)

Learn about the properties of logarithms and how to use them to rewrite logarithmic expressions. For example, expand log₂(3a).

The product rulelogb(MN)=logb(M)+logb(N)
The quotient rulelogb(MN)=logb(M)logb(N)
The power rulelogb(Mp)=plogb(M)

(These properties apply for any values of M, N, and b for which each logarithm is defined, which is M, N>0 and 0<b1.)

Remember, in order for a logarithm to be defined, the argument of the logarithm must be positive and the base of the logarithm must also be positive and not equal to 1.

What you should be familiar with before taking this lesson

You should know what logarithms are. If you don't, please check out our intro to logarithms.

What you will learn in this lesson

Logarithms, like exponents, have many helpful properties that can be used to simplify logarithmic expressions and solve logarithmic equations. This article explores three of those properties.

Let's take a look at each property individually.

The product rule: logb(MN)=logb(M)+logb(N)

This property says that the logarithm of a product is the sum of the logs of its factors.

Sure! If M=4, N=8 and b=2, then according to the property, log2(48)=log2(4)+log2(8).

The work below shows that the property is indeed true in this case!

log2(48)=log2(4)+log2(8)log2(32)=log2(4)+log2(8)Since48=325=2+3Evaluating the logs5=5

This is by no means a proof! Rather, it may convince us that the property is plausible and perhaps give us some insight as to why this is true.

We can use the product rule to rewrite logarithmic expressions.

Example: Expanding logarithms using the product rule

For our purposes, expanding a logarithm means writing it as the sum of two logarithms or more.

Let's expand log6(5y).

Notice that the two factors of the argument of the logarithm are 5 and y. We can directly apply the product rule to expand the log.

log6(5y)=log6(5y)=log6(5)+log6(y)Product rule

Example: Condensing logarithms using the product rule

For our purposes, compressing a sum of two or more logarithms means writing it as a single logarithm.

Let's condense log3(10)+log3(x).

Since the two logarithms have the same base (base-3), we can apply the product rule in the reverse direction:

log3(10)+log3(x)=log3(10x)Product rule=log3(10x)

An important note

When we compress logarithmic expressions using the product rule, the bases of all the logarithms in the expression must be the same.

For example, we cannot use the product rule to simplify something like log2(8)+log3(y).

2) Condense log5(2y)+log5(8).

The quotient rule: logb(MN)=logb(M)logb(N)

This property says that the log of a quotient is the difference of the logs of the dividend and the divisor.

Sure! If M=81, N=3 and b=3, then according to the property, log3(813)=log3(81)log3(3).

The work below shows that the property is indeed true in this case!

log3(813)=log3(81)log3(3)log3(27)=log3(81)log3(3)Since81÷3=273=41Evaluating the logs3=3

This is by no means a proof! Rather, it may convince us that the property is plausible and perhaps give us some insight as to why this is true.

Now let's use the quotient rule to rewrite logarithmic expressions.

Example: Expanding logarithms using the quotient rule

Let's expand log7(a2), writing it as the difference of two logarithms by directly applying the quotient rule.

log7(a2)=log7(a)log7(2)Quotient rule

Example: Condensing logarithms using the quotient rule

Let's condense log4(x3)log4(y).

Since the two logarithms have the same base (base-4), we can apply the quotient rule in the reverse direction:

log4(x3)log4(y)=log4(x3y)Quotient rule

An important note

When we compress logarithmic expressions using the quotient rule, the bases of all logarithms in the expression must be the same.

For example, we cannot use the quotient rule to simplify something like log2(8)log3(y).

Check your understanding

3) Expand logb(4c).

4) Condense log(3z)log(8).

The power rule: logb(Mp)=plogb(M)

This property says that the log of a power is the exponent times the logarithm of the base of the power.

Sure! If M=4, p=2, and b=4, then according to the property, log4(42)=2log4(4).

The work below shows that the property is indeed true in this case!

log4(42)=2log4(4)log4(16)=2log4(4)Since42=162=21Evaluating the logs2=2

This is by no means a proof! Rather, it may convince us that the property is plausible and perhaps give us some insight as to why this is true.

Now let's use the power rule to rewrite log expressions.

Example: Expanding logarithms using the power rule

For our purposes in this section, expanding a single logarithm means writing it as a multiple of another logarithm.

Let's use the power rule to expand log2(x3).

log2(x3)=3log2(x)Power rule=3log2(x)

Example: Condensing logarithms using the power rule

For our purposes in this section, condensing a multiple of a logarithm means writing it as another single logarithm.

Let's use the power rule to condense 4log5(2),

When we condense a logarithmic expression using the power rule, we make any multipliers into powers.

4log5(2)=log5(24)Power rule=log5(16)

Check your understanding

5) Expand log7(x5).

6) Condense 6ln(y).

Challenge problems

To solve these next problems, you will have to apply several properties in each case. Give it a try!

7) Which of the following is equivalent to logb(2x35)?

Choose 1 answer:

Choose 1 answer:

  • 3logb(2x)logb(5)

  • 3logb(2x)+logb(5)

  • logb(2)+3logb(x)logb(5)

  • logb(2)3logb(x)logb(5)

8) Which of the following is equivalent to 3log2(x)2log2(5)?

Choose 1 answer:

Choose 1 answer:

  • log2(x325)

  • log2(x3)log2(25)

  • 6log2(x5)

  • 6log2(x5)

Intro to logarithm properties (article) | Khan Academy (2024)
Top Articles
Is this a Jordan Kahn comeback? Inside the return of Vespertine and Meteora's rise
America’s Most Popular Regional Ice Cream Chains [MAP]
Lowe's Garden Fence Roll
Best Pizza Novato
It's Official: Sabrina Carpenter's Bangs Are Taking Over TikTok
Chris wragge hi-res stock photography and images - Alamy
Aquatic Pets And Reptiles Photos
83600 Block Of 11Th Street East Palmdale Ca
George The Animal Steele Gif
Ivegore Machete Mutolation
Hood County Buy Sell And Trade
House Party 2023 Showtimes Near Marcus North Shore Cinema
Elbasha Ganash Corporation · 2521 31st Ave, Apt B21, Astoria, NY 11106
Les Schwab Product Code Lookup
House Of Budz Michigan
Youravon Comcom
Les Rainwater Auto Sales
Star Wars: Héros de la Galaxie - le guide des meilleurs personnages en 2024 - Le Blog Allo Paradise
Accident On May River Road Today
Craigslist West Valley
Curry Ford Accident Today
Craigslist Prescott Az Free Stuff
Iu Spring Break 2024
Titanic Soap2Day
Pirates Of The Caribbean 1 123Movies
Certain Red Dye Nyt Crossword
Asteroid City Showtimes Near Violet Crown Charlottesville
2487872771
Meridian Owners Forum
Margaret Shelton Jeopardy Age
Relaxed Sneak Animations
EVO Entertainment | Cinema. Bowling. Games.
4.231 Rounded To The Nearest Hundred
Mchoul Funeral Home Of Fishkill Inc. Services
Evil Dead Rise Showtimes Near Regal Sawgrass & Imax
Proto Ultima Exoplating
Loopnet Properties For Sale
Rock Salt Font Free by Sideshow » Font Squirrel
Ultra Clear Epoxy Instructions
Song That Goes Yeah Yeah Yeah Yeah Sounds Like Mgmt
6143 N Fresno St
Glossytightsglamour
Andhra Jyothi Telugu News Paper
Flags Half Staff Today Wisconsin
Emulating Web Browser in a Dedicated Intermediary Box
Pathfinder Wrath Of The Righteous Tiefling Traitor
56X40X25Cm
Rescare Training Online
American Bully Puppies for Sale | Lancaster Puppies
Pilot Travel Center Portersville Photos
Twizzlers Strawberry - 6 x 70 gram | bol
Latest Posts
Article information

Author: Catherine Tremblay

Last Updated:

Views: 6675

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Catherine Tremblay

Birthday: 1999-09-23

Address: Suite 461 73643 Sherril Loaf, Dickinsonland, AZ 47941-2379

Phone: +2678139151039

Job: International Administration Supervisor

Hobby: Dowsing, Snowboarding, Rowing, Beekeeping, Calligraphy, Shooting, Air sports

Introduction: My name is Catherine Tremblay, I am a precious, perfect, tasty, enthusiastic, inexpensive, vast, kind person who loves writing and wants to share my knowledge and understanding with you.